dimecres, de desembre 16, 2009

Un número per cada guerra

La capacitat que tenen les matemàtiques per fer emergir característiques en abstracte sobre coses reals pot ser una gran virtut o un gran defecte. És una bona cosa ja que ens permet veure característiques que passen desapercebudes, amagades sota el dia a dia de les coses. Però també pot ser un defecte en el sentit que ens distancien de l’essència del que analitzem. Normalment cap de les dues coses són massa greus. Però en ocasions topo amb algun exemple que m’arriba a incomodar malgrat l’interès que pugui tenir. Un cas que he trobat fa ben poc és la guerra.

La guerra és una de les característiques més menyspreables dels humans. Però si mirem la història sembla que és inherent a la nostra manera de ser. Tant bon punt es van posar d’acord un grup d’humans van començar a fer la guerra als altres. No cal entrar en detalls de tot el que representa la guerra, però la desmesurada afició que hi tenim ens fa indignes de l’apel·latiu sapiens al nom de la nostra espècie.

Però hi ha qui ha aplicat un enfocament matemàtic a la guerra. I en fer-ho, es troben fets curiosos. Per exemple, podem dibuixar una gràfica on hi representem a l’eix de les “x” el nombre de morts en un atac i a l’eix de les “y” el nombre d’atacs. Si ho fem, trobem un patró curiós. D’entrada semblaria que no ha de seguir un ordre molt clar. Segurament hi haurà més atacs que causin poques víctimes i un nombre menor que en causi moltes, però la distribució no té perquè ser gaire coherent en un escenari caòtic com és justament un conflicte armat.

Però el cas és que surt una línia molt ben definida. Una distribució que permet definir una fórmula per caracteritzar una guerra. Així, la probabilitat que un atac causi determinat nombre de morts és: p(x)= Cx . On C és una constant que depèn del conflicte en qüestió, x és el nombre de víctimes i α depén del pendent de la recta.

Molt bé. Podem definir una guerra en una fórmula matemàtica. I que?

Doncs la gràcia és que si s’analitzen diferents guerres s’observa que aquesta α sempre té un valor al voltant del 2,5. per exemple, la guerra d’Irak té un valor de 2,31, la d’Afganistan surt pelat el 2,5 i a Colòmbia tenen un 2,79. És curiós, perquè són conflictes diferents, en països diferents i en condicions molt diferents. Però totes comparteixen aquest valor.

Una explicació física és que aquest valor dona idea del grau de compacte que és el combatent més feble. Els insurgents, els revolucionaris o els terroristes. Si α és molt petit vol dir que es tracta d'uns grups molt dispersos, febles, poc estructurats. Per contra, quan α es fa gran l’insurgència esdevé més forta, menys dividida.

Això permet entendre perquè els conflictes tenen valors propers a 2,5. Si el valor baixa molt, l’insurgència serà fàcilment derrotada ja que està massa dividida. Un cop derrotada, s’acabat la guerra i ja no hi ha res a mesurar.

Per l’altra banda, si α augmenta el seu valor, el que tindrem serà un oponent molt fort, que planta cara. En casos extrems un exèrcit en igualtat de condicions. En tot cas l’important és que hi ha un grup amb qui es pot negociar, amb qui pots establir uns acords i trobar una manera d’enllestir el conflicte. Això també condueix al final de les hostilitats.

Per tant, les guerres que duren i duren son les que tenen valors α propers a 2,5. És una qüestió quasi evolutiva ja que qualsevol organització que no hi arribi, serà immediatament derrotada. I per altra banda, per acabar amb un conflicte, el que cal trobar és la manera d’empènyer α cap avall si volem derrotar l’enemic, o cap amunt si simplement volem trobar un interlocutor amb qui segellar la pau.

Ho trobo fascinant, però alhora depriment, ja que em costa reduir a una equació una guerra, amb tot el que comporta, el patiment, les injustícies, el dolor, la destrucció i la indecència moral que representa. Segurament que distanciar-se’n és una manera intel·ligent d’afrontar-ho. Sobretot això si permet trobar camins per acabar amb la pròpia guerra. Però no deixa d’incomodar-me, encara que pugui apreciar la manera de fer l’estudi.

8 comentaris :

Mi sa el ha dit...

ei, molt interessant

felicitats pel bloc

no l'havia vist mai

apa

Carquinyol ha dit...

jur... deixant de costat aspectes ètics, realment és impressionant poder quantificar de quin tipus és una guerra a partir d'un numeret! Suposo que s'haurà comprovat aquesta fòrmula amb diverses guerres del llarg de la història, no ?

I una curiositat, C com es quantifica?

McAbeu ha dit...

Mentre anava llegint l'apunt pensava el mateix que tu dius a l'últim paràgraf: És fascinant però alhora depriment que es pugui reduir una guerra a una equació matemàtica, del que no estic tan segur és que sigui la millor manera d'afrontar-ho per trobar una solució, en el sentit que es despersonalitza una cosa que afecta massa a les persones.

Clidice ha dit...

estic convençuda que aquesta i altres equacions possibles formen part del dia a dia dels senyors (i senyores ara també) dedicats a l'art (?) de matar persones. M'agraden les matemàtiques però sóc incapaç d'aplicar-li la fredor necessària en aquestes. Gràcies per la info :)

kika ha dit...

estudiar el com i el perquè de les guerres, en un sentit, és només estudiar el comportament humà.
i això sempre hauria de ser interessant i sempre hauria de ser objecte d'estudi.
no te res d'estrany que aquest estudi es porti a terme quantificant algunes variables.
i si de veritat poden explicar el perquè i el com de les guerres amb uns arguments tan entenedors, benvingudes les matemàtiques a tot arreu.

Alasanid ha dit...

En veure el nom pensava que apuntaves més cap a Lewis F. Richardson, que va provar de tractar els conflictes armats (relacionant-los amb longituds de fronteres), ell era pacifista.

Però quan he vist el gràfic he vist que anava errat.

He quedat sorprès però en part era d'esperar, es a dir cada guerra és diferent i per tant té "coses" caracterísitques.

Aquest tipus de representacions cada dia les veig en més llocs.

Ara el que no m'ha quedat massa clar (suposo que llegint el pdf ho veure...) és aquests morts són dels atacants, dels defensors o dels dos bàndols?

Albert B. i R. ha dit...

El Premi Nobel per la Pau diu que la guerra és necessària pel manteniment de la pau...

Dan ha dit...

Mi sa el. Benvingut. I gràcies!

Carquinyol. L'han aplicat a unes quantes guerres i conflictes. també a situacions de terrorisme. I com treuen C a partir de les dades, doncs no ho se. A l'article de l'enllaç ho deu dir. Però es molta matemàtica. :-)

McAbeu. Per una banda és depriment. Però en ocasions és útil despersonalitzar les coses per poder prendre decisions o entendre les coses que passen sense el condicionant dels sentiments.

Clidice. ui. Els que s'hi dediquen, segur que en fan servir moltes mes de matemàtiques i amb intencions molt més fosques. Després de tot, les mates només són una eina. I les eines es poden emprar de moltes maneres.

kika. Certament que ajuden a entendre les coses. Encara que ens faci cosa aplicar-les.

Alasanid.Suposo que el nombre de víctimes el fan contant les baixes propies. Un dels matemàtics que hi treballa deia que el més difícil no es fer els càlculs sinò aconseguir les dades reals.

Albert B i R. Allo del "si vis paze para bellum". Fa ràbia pensar que la història aparentment els dona la raó.